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Stability of cosmological scaling solutions
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We study the stability of cosmological scaling solutions within the class of spatially homogeneous cosmo-
logical models with a perfect fluid subject to the equation of smfe (y—1)p, (where y is a constant
satisfying 0<y<2) and a scalar field with an exponential potential. The scaling solutions, which are spatially
flat isotropic models in which the scalar field energy density tracks that of the perfect fluid, are of physical
interest. For example, in these models a significant fraction of the current energy density of the Universe may
be contained in the scalar field whose dynamical effects mimic cold dark matter. It is known that the scaling
solutions are late-time attractofise., stabl¢ in the subclass of flat isotropic models. We find that the scaling
solutions are stabléto shear and curvature perturbatipris generic anisotropic Bianchi models when
<2/3. However, wheny>2/3, and particularly for realistic matter with=1, the scaling solutions are un-
stable; essentially they are unstable to curvature perturbations, although they are stable to shear perturbations.
We briefly discuss the physical consequences of these relsslts56-282(98)10920-7
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. INTRODUCTION V=Vpe ¢, (1)

Scalar field cosmological models are of great importancevhereVy and « are positive constants, evolving in a flat
in the study of the early Universe. Models with a variety of FRW model containing a separately conserved perfect which
self-interaction potentials have been studied, and one potegatisfies the barotropic equation of state
tial that is commonly investigated and which arises in a num-
ber of physical situations has an exponential dependence on p,=(y—1p,,
the scalar field1-5]. There have been a number of studies
of spatially homogeneous scalar field cosmological modelsvhere the constany satisfies 6 y<2 (although we shall
with an exponential potential, with particular emphasis ononly be interested in the range<Gy<<2 herg, are given by
the possible existence of inflation in such modédlks

These models may also be important even if the exponen-

L Y

tial potential is too steep to drive inflation. For example, H__§ (vpyt+ %), @

there exist “scaling solutions” in which the scalar field en-

ergy density tracks that of the perfect fluigo that at late > =—3yH 3
py=—37Hp,, )

times neither field is negligibje[2]. In particular, in[3] a

phase-plane analysis of the spatially flat Friedmann- - .

Robertson-WalkefFRW) models showed that these scaling ¢=—3Ho+«V, 4

solutions are the unique late-time attractors whenever the biect to the Eried traint

exist. The cosmological consequences of these scaling mo ubject to the Friedmann constrain

els have been further studied [id]. For example, in such 1 1.

models a significant fraction of the current energy density of H2== <p + = pP+V

the Universe may be contained in the homogeneous scalar 3\ 2

field whose dynamical effects mimic cold dark matter; the ) .

tightest constraint on these cosmological models comes frofyhereH is the Hubble parameter, an overdot denotes ordi-

primordial nucleosynthesis bounds on any such relic densitpary differentiation with respect to timg and units have

[2-4]. een chosen so that/® = 1. We note that the total energy
Clearly these scaling models are of potential cosmologicatlensity of the scalar field is given by

significance. It is consequently of prime importance to deter-

. ®)

mine the genericity of such models by studying their stability 1.,
in the context of more general spatially homogeneous mod- Pe=3 V. ©
els. It is this question that we shall address in this paper.
Defining
Il. THE SCALING SOLUTION .
The governing equations for a scalar field with an expo- = i y= ﬂ 7)
nential potential J6H V3H
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and the new logarithmic time variabkeby which is the same as the equation of state parameter for the
perfect fluid. The solution is referred to as a scaling solution

d_TZH ) since the energy density of the scalar field remains propor-
dt tional to that of the barotropic perfect fluid according to

. QIQ = «*/3y—1 [2]. Since the scaling solution corre-
Egs.(2)—(4) can be written as the plane-autonomous systengponds to an equilibrium point of the syst¢@y(10) we note

[3]: that it is a self-similar cosmological modg8].
3 3
X'==3x+\/5 Ky2+ > X[ 22+ y(1—x2—y3)], (9) IIl. STABILITY OF THE SCALING SOLUTION
Let us study the stability of the scaling solution with re-
3 2 spect to anisotropic and curvature perturbations within the
y'= 3 Y|~ Vg et 2x2+ y(1—x2—y?) |, (10)  class of spatially homogeneous models.

where a prime denotes differentiation with respect,tand A. Bianchi | models

Eq. (5) becomes In order to study the stability of the scaling solution with

A+ 0.—1 (11) respect to .shear .pert_urbat_ions we shaII.first investigate the
(A class of anisotropic Bianchi | models, which are the simplest
where spatially homogeneous generalizations of the flat FRW mod-
els which have nonzero shear but zero three-curvature. The
governing equations in the Bianchi | models are E§sand

Qzﬂ, Q¢Eﬂzx2+y2, (12)  (4), and Eq.(5) becomes
3H? 3H?
. . . 2_1 1 2 2
which implies that G=x2+y?<1 for Q=0 so that the H*=3pyT 5 ¢V +25 (15

phase-space is bounded.
A qualitative analysis of this plane-autonomous system igypere 32— %E?,R‘G is the contribution due to the shear

given in[3]. The well-known power-law inflationary solu- heres: is a constant anR s the scale factor. Equatia@)
tion for k?<2 [1] corresponds to the equilibrium poimnt is replaced by the time derivative of E€L5).

= KI\6,y=(1-x%6)"*(Q14=1,0=0) of the gysten(9)2/ Using the definitiong7), (8), and(12) we can deduce the
(10), which is shown to be stablé.e., attracting for «°  governing ordinary differential equations. Because ofiRe
<3y in the presence of a barotropic fluid. Previous analysiserm in Eq.(15) we can no longer use this equation to sub-
has shown that wher?<2 this power-law inflationary so- stitute for p., in the remaining equations, and we conse-

lution is a global attractor in spatially homogeneous modelgyently obtain the three-dimensional autonomous system:
in the absence of a perfect fluig@xcept for a subclass of

Bianchi type IX models which recollapse 3 3
In addition, fory>0 there exists a scaling solution cor- x’'=—3x+ \[E Ky>+ > X[24 (y—2)Q—2y?], (16
responding to the equilibrium point

3 3 2
X=Xo= \@ % y=yo=[3(2— v)y/2k?]*?, (13 y'=5 y‘ - \@ KX+ 2x+ (y—2)Q—2y?, 17
whenever k2>3y. The linearization of system(9)/(10) Q'=30{(y—2)(Q—1)—2y?}, (18)
about the equilibrium poin€13) yields the two eigenvalues
with negative real parts where Eq.(15) yields
3 3 L2 \2=32H 2>
~ 7 @2 N2 24P F(9y-2)] (14 1= Qo —y =270, 19

so that we again have a bounded phase-space.
when y<<2. The equilibrium point is consequently stalte The scaling solution, corresponding to the flat FRW solu-
spiral for k?>24y?/(9y—2), else a nodeso that the corre- tion, is now represented by the equilibrium point
sponding cosmological solution is a late-time attractor in the
class of flat FRW models in which neither the scalar-field 3y
nor the perfect fluid dominates the evolution. The effective X=Xg, Y=VYo, Q=1- —- (20
equation of state for the scalar field is given by K

(pstPy) 22 The linearization of systertil6)—(18) about the equilibrium
2t > 2 5=V point (20) yields three eigenvalues, two of which are given
Po Xo+Yo by Eq.(14) and the third has the value 3(2— ), all with

Y=
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negative real parts whep<<2. Consequently the scaling so- have effected an appreciable deviation from the flat FRW

lution is stable to Bianchi type | shear perturbations.

B. Curved FRW models

model (as in the case of the standard perfect fluid FRW
mode).

Hence the scaling solution may still be of physical inter-
est. To further study its significance it is important to deter-

In order to study the stability of the scaling solution with mine its stability in a general class of spatially homogeneous

respect to curvature perturbations we shall first study thenodels. We shall therefore study the stability of the scaling
class of FRW models which have curvature but no sheargg|ytion in the(general class of Bianchi type VI models,

Again Eqgs.(3) and (4) are valid, but in this case Ed5)
becomes

+K,

1-2
p.y+§¢ +V

H2=E (22)
3

whereK = —kR ™2 andk is a constant that can be scaled to 0,
+1. Equation(2) is again replaced by the time derivative of

Eqg. (21).

As in the previous case we cannot use &) to replace
p,, and using the definition&), (8), and(12) we obtain the
three-dimensional autonomous system:

= 3+\F 2 2las 2 vy
X'==3X+\ 5 ky T X | v 3 3 (1+2x°=y) |,
(22)
/_3 \/E 2 Q 2 1+2 2 2
y'=3Y 3 KX+ vy 3]+ 5 (1+2X7=yT)
(23)
2 2
Q’=3Q((y—§>(ﬂ—1)+§(2x2—y2)J, (24)
where
1-Q—x?—y?=KH 2, (25)

The phase-space is bounded ksr 0 or k= —1, but not for
k=+1.

which are perhaps the most physically relevant models since
they can be regarded as generalizations of the open
(negative-curvatupeFRW models.

C. Bianchi VIl ;, models

The Bianchi VI, models are sufficiently complicated that
a simple coordinate approa¢similar to that given abovds
not desirable. To study Bianchi \jlispatially homogeneous
models with a minimally coupled scalar field with an expo-
nential potential and a barotropic perfect fluid it is best to
employ a group-invariant orthonormal frame approach with
expansion-normalized state variables governed by a set of
dimensionless evolution equatioftnstituting a “reduced”
dynamical systepnwith respect to a dimensionless time sub-
ject to a nonlinear constraif®], generalizing previous work
in which there is no scalar fiel?] and in which there is no
matter[8].

The reduced dynamical system is seven-dimensi(audil-
ject to a constraint[9]. The scaling solution is again an
equilibrium point of this seven-dimensional system. This
equilibrium point, which only exists fok?>>3y, has two
eigenvalues given by Eq14) which have negative real parts
for y<2, two eigenvalues(corresponding to the shear
modes proportional to (/—2) which are also negative for
v<2, and two eigenvalug@ssentially corresponding to cur-
vature modesproportional to (3y—2) which are negative
for y<3 and positive fory>% [9]. The remaining eigen-
value (which also corresponds to a curvature moideequal
to 3y—4. Hence fory<2 (x?>37y) the scaling solution is
again stable. However, for realistic matter=1) the corre-

The scaling solution again corresponds to the equilibriumsponding equilibrium point is a saddle witi{lawer) four- or

point (20). The linearization of systert22)—(24) about this

five-dimensional stable manifol(depending upon whether

equilibrium point yields the two eigenvalues with negative 4> 4/3 or y<4/3, respectively

real parts given by Eq(l4) and the eigenvalue (3-2).

Hence the scaling solution is only stable fprc5. For y
2

>3 the equilibrium point(20) is a saddle with a two-

IV. DISCUSSION

dimensional stable manifold and a one-dimensional unstable Perhaps these stability results can be understood heuristi-

manifold.

cally as follows. From the conservation law the barotropic

Consequently the scaling solution is unstable to curvaturenatter redshifts aR~3?. In subsection Il A we saw that in

perturbations in the case of realistic mattee=(1); i.e., the

this case the she&? redshifts asR™® and so always red-

scaling solution is no longer a late-time attractor in this caseshifts faster than the matter, resulting in the stability of the
However, the scaling solution does correspond to an equilibscaling solution. We note that the bifurcation that occurs at
rium point of the governing autonomous system of ordinaryy=2/3 in subsection Il B corresponds to the case in which
differential equations and hence there are cosmological modhe curvatureK is formally equivalent to a barotropic fluid
els that can spend an arbitrarily long time “close” to this with y=2/3, and in which both the matter and the curvature
solution. Moreover, since the curvature of the Universe isedshift asR™2. For y>2/3, the barotropic matter redshifts
presently constrained to be small by cosmological observaaster thanR™2? and the curvature eventually dominates. A
tions, it is possible that the scaling solution could be impor-complete qualitative analysis of cosmological models with a
tant in the description of our actual Universe. That is, notperfect fluid and a scalar field with an exponential potential
enough time has yet elapsed for the curvature instability tavill be undertaken in future workcf. [9]].
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