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Stability of cosmological scaling solutions
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We study the stability of cosmological scaling solutions within the class of spatially homogeneous cosmo-
logical models with a perfect fluid subject to the equation of statepg5(g21)rg ~where g is a constant
satisfying 0,g,2) and a scalar field with an exponential potential. The scaling solutions, which are spatially
flat isotropic models in which the scalar field energy density tracks that of the perfect fluid, are of physical
interest. For example, in these models a significant fraction of the current energy density of the Universe may
be contained in the scalar field whose dynamical effects mimic cold dark matter. It is known that the scaling
solutions are late-time attractors~i.e., stable! in the subclass of flat isotropic models. We find that the scaling
solutions are stable~to shear and curvature perturbations! in generic anisotropic Bianchi models wheng
,2/3. However, wheng.2/3, and particularly for realistic matter withg>1, the scaling solutions are un-
stable; essentially they are unstable to curvature perturbations, although they are stable to shear perturbations.
We briefly discuss the physical consequences of these results.@S0556-2821~98!10920-7#

PACS number~s!: 98.80.Hw
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I. INTRODUCTION

Scalar field cosmological models are of great importa
in the study of the early Universe. Models with a variety
self-interaction potentials have been studied, and one po
tial that is commonly investigated and which arises in a nu
ber of physical situations has an exponential dependenc
the scalar field@1–5#. There have been a number of studi
of spatially homogeneous scalar field cosmological mod
with an exponential potential, with particular emphasis
the possible existence of inflation in such models@1#.

These models may also be important even if the expon
tial potential is too steep to drive inflation. For examp
there exist ‘‘scaling solutions’’ in which the scalar field e
ergy density tracks that of the perfect fluid~so that at late
times neither field is negligible! @2#. In particular, in@3# a
phase-plane analysis of the spatially flat Friedma
Robertson-Walker~FRW! models showed that these scalin
solutions are the unique late-time attractors whenever t
exist. The cosmological consequences of these scaling m
els have been further studied in@4#. For example, in such
models a significant fraction of the current energy density
the Universe may be contained in the homogeneous sc
field whose dynamical effects mimic cold dark matter; t
tightest constraint on these cosmological models comes f
primordial nucleosynthesis bounds on any such relic den
@2–4#.

Clearly these scaling models are of potential cosmolog
significance. It is consequently of prime importance to de
mine the genericity of such models by studying their stabi
in the context of more general spatially homogeneous m
els. It is this question that we shall address in this paper

II. THE SCALING SOLUTION

The governing equations for a scalar field with an exp
nential potential
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V5V0e2kf, ~1!

where V0 and k are positive constants, evolving in a fla
FRW model containing a separately conserved perfect wh
satisfies the barotropic equation of state

pg5~g21!rg ,

where the constantg satisfies 0<g<2 ~although we shall
only be interested in the range 0,g,2 here!, are given by

Ḣ52
1

2
~grg1ḟ2!, ~2!

ṙg523gHrg , ~3!

f̈523Hḟ1kV, ~4!

subject to the Friedmann constraint

H25
1

3 S rg1
1

2
ḟ21VD , ~5!

whereH is the Hubble parameter, an overdot denotes o
nary differentiation with respect to timet, and units have
been chosen so that 8pG51. We note that the total energ
density of the scalar field is given by

rf5
1

2
ḟ21V. ~6!

Defining

x[
ḟ

A6H
, y[

AV

)H
, ~7!
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and the new logarithmic time variablet by

dt

dt
[H, ~8!

Eqs.~2!–~4! can be written as the plane-autonomous sys
@3#:

x8523x1A3

2
ky21

3

2
x@2x21g~12x22y2!#, ~9!

y85
3

2
yF2A2

3
kx12x21g~12x22y2!G , ~10!

where a prime denotes differentiation with respect tot, and
Eq. ~5! becomes

V1Vf51, ~11!

where

V[
rg

3H2
, Vf[

rf

3H2
5x21y2, ~12!

which implies that 0<x21y2<1 for V>0 so that the
phase-space is bounded.

A qualitative analysis of this plane-autonomous system
given in @3#. The well-known power-law inflationary solu
tion for k2,2 @1# corresponds to the equilibrium pointx
5k/A6, y5(12k2/6)1/2 (Vf51,V50) of the system~9!/
~10!, which is shown to be stable~i.e., attracting! for k2

,3g in the presence of a barotropic fluid. Previous analy
has shown that whenk2,2 this power-law inflationary so
lution is a global attractor in spatially homogeneous mod
in the absence of a perfect fluid~except for a subclass o
Bianchi type IX models which recollapse!.

In addition, forg.0 there exists a scaling solution co
responding to the equilibrium point

x5x05A3

2

g

k
, y5y05@3~22g!g/2k2#1/2, ~13!

whenever k2.3g. The linearization of system~9!/~10!
about the equilibrium point~13! yields the two eigenvalue
with negative real parts

2
3

4
~22g!6

3

4k
A~22g!@24g22k2~9g22!# ~14!

wheng,2. The equilibrium point is consequently stable@a
spiral fork2.24g2/(9g22), else a node# so that the corre-
sponding cosmological solution is a late-time attractor in
class of flat FRW models in which neither the scalar-fie
nor the perfect fluid dominates the evolution. The effect
equation of state for the scalar field is given by

gf[
~rf1pf!

rf
5

2x0
2

x0
21y0

2
5g,
12350
m

is

is

ls

e

e

which is the same as the equation of state parameter for
perfect fluid. The solution is referred to as a scaling solut
since the energy density of the scalar field remains prop
tional to that of the barotropic perfect fluid according
V/Vf5k2/3g21 @2#. Since the scaling solution corre
sponds to an equilibrium point of the system~9!/~10! we note
that it is a self-similar cosmological model@6#.

III. STABILITY OF THE SCALING SOLUTION

Let us study the stability of the scaling solution with r
spect to anisotropic and curvature perturbations within
class of spatially homogeneous models.

A. Bianchi I models

In order to study the stability of the scaling solution wi
respect to shear perturbations we shall first investigate
class of anisotropic Bianchi I models, which are the simpl
spatially homogeneous generalizations of the flat FRW m
els which have nonzero shear but zero three-curvature.
governing equations in the Bianchi I models are Eqs.~3! and
~4!, and Eq.~5! becomes

H25
1

3 S rg1
1

2
ḟ21VD1S2, ~15!

where S25 1
3 S0

2R26 is the contribution due to the shea
whereS0 is a constant andR is the scale factor. Equation~2!
is replaced by the time derivative of Eq.~15!.

Using the definitions~7!, ~8!, and~12! we can deduce the
governing ordinary differential equations. Because of theS2

term in Eq.~15! we can no longer use this equation to su
stitute for rg in the remaining equations, and we cons
quently obtain the three-dimensional autonomous system

x8523x1A3

2
ky21

3

2
x@21~g22!V22y2#, ~16!

y85
3

2
yH 2A2

3
kx12x1~g22!V22y2J , ~17!

V853V$~g22!~V21!22y2%, ~18!

where Eq.~15! yields

12V2x22y25S2H22>0, ~19!

so that we again have a bounded phase-space.
The scaling solution, corresponding to the flat FRW so

tion, is now represented by the equilibrium point

x5x0 , y5y0 , V512
3g

k2
. ~20!

The linearization of system~16!–~18! about the equilibrium
point ~20! yields three eigenvalues, two of which are give
by Eq. ~14! and the third has the value23(22g), all with
1-2
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negative real parts wheng,2. Consequently the scaling so
lution is stable to Bianchi type I shear perturbations.

B. Curved FRW models

In order to study the stability of the scaling solution wi
respect to curvature perturbations we shall first study
class of FRW models which have curvature but no she
Again Eqs.~3! and ~4! are valid, but in this case Eq.~5!
becomes

H25
1

3 S rg1
1

2
ḟ21VD1K, ~21!

whereK52kR22 andk is a constant that can be scaled to
61. Equation~2! is again replaced by the time derivative
Eq. ~21!.

As in the previous case we cannot use Eq.~21! to replace
rg , and using the definitions~7!, ~8!, and~12! we obtain the
three-dimensional autonomous system:

x8523x1A3

2
ky21

3

2
xF S g2

2

3DV1
2

3
~112x22y2!G ,

~22!

y85
3

2
yH 2A2

3
kx1S g2

2

3DV1
2

3
~112x22y2!J ,

~23!

V853VH S g2
2

3D ~V21!1
2

3
~2x22y2!J , ~24!

where

12V2x22y25KH22. ~25!

The phase-space is bounded fork50 or k521, but not for
k511.

The scaling solution again corresponds to the equilibri
point ~20!. The linearization of system~22!–~24! about this
equilibrium point yields the two eigenvalues with negati
real parts given by Eq.~14! and the eigenvalue (3g22).
Hence the scaling solution is only stable forg, 2

3 . For g
. 2

3 the equilibrium point ~20! is a saddle with a two-
dimensional stable manifold and a one-dimensional unst
manifold.

Consequently the scaling solution is unstable to curva
perturbations in the case of realistic matter (g>1); i.e., the
scaling solution is no longer a late-time attractor in this ca
However, the scaling solution does correspond to an equ
rium point of the governing autonomous system of ordin
differential equations and hence there are cosmological m
els that can spend an arbitrarily long time ‘‘close’’ to th
solution. Moreover, since the curvature of the Universe
presently constrained to be small by cosmological obse
tions, it is possible that the scaling solution could be imp
tant in the description of our actual Universe. That is, n
enough time has yet elapsed for the curvature instability
12350
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have effected an appreciable deviation from the flat FR
model ~as in the case of the standard perfect fluid FR
model!.

Hence the scaling solution may still be of physical inte
est. To further study its significance it is important to det
mine its stability in a general class of spatially homogene
models. We shall therefore study the stability of the scal
solution in the~general! class of Bianchi type VIIh models,
which are perhaps the most physically relevant models s
they can be regarded as generalizations of the o
~negative-curvature! FRW models.

C. Bianchi VII h models

The Bianchi VIIh models are sufficiently complicated tha
a simple coordinate approach~similar to that given above! is
not desirable. To study Bianchi VIIh spatially homogeneous
models with a minimally coupled scalar field with an exp
nential potential and a barotropic perfect fluid it is best
employ a group-invariant orthonormal frame approach w
expansion-normalized state variables governed by a se
dimensionless evolution equations~constituting a ‘‘reduced’’
dynamical system! with respect to a dimensionless time su
ject to a nonlinear constraint@6#, generalizing previous work
in which there is no scalar field@7# and in which there is no
matter@8#.

The reduced dynamical system is seven-dimensional~sub-
ject to a constraint! @9#. The scaling solution is again a
equilibrium point of this seven-dimensional system. Th
equilibrium point, which only exists fork2.3g, has two
eigenvalues given by Eq.~14! which have negative real part
for g,2, two eigenvalues~corresponding to the shea
modes! proportional to (g22) which are also negative fo
g,2, and two eigenvalues~essentially corresponding to cu
vature modes! proportional to (3g22) which are negative
for g, 2

3 and positive forg. 2
3 @9#. The remaining eigen-

value~which also corresponds to a curvature mode! is equal
to 3g24. Hence forg, 2

3 (k2.3g) the scaling solution is
again stable. However, for realistic matter (g>1) the corre-
sponding equilibrium point is a saddle with a~lower! four- or
five-dimensional stable manifold~depending upon whethe
g.4/3 or g,4/3, respectively!.

IV. DISCUSSION

Perhaps these stability results can be understood heu
cally as follows. From the conservation law the barotrop
matter redshifts asR23g. In subsection III A we saw that in
this case the shearS2 redshifts asR26 and so always red-
shifts faster than the matter, resulting in the stability of t
scaling solution. We note that the bifurcation that occurs
g52/3 in subsection III B corresponds to the case in wh
the curvatureK is formally equivalent to a barotropic fluid
with g52/3, and in which both the matter and the curvatu
redshift asR22. For g.2/3, the barotropic matter redshift
faster thanR22 and the curvature eventually dominates.
complete qualitative analysis of cosmological models with
perfect fluid and a scalar field with an exponential poten
will be undertaken in future work@cf. @9##.
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