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Summary. — Following recent work by Senovilla et al. on cylindrically symmetric
4D space-times, we give several exact solutions of this type in 5D and derive their 4D
properties.

PACS 98.80 – Cosmolgy.

1. – Introduction

Recently, considerable interest was generated by the discovery by Senovilla and
others of exact cylindrically symmetric cosmological solutions of the field equations in
4D that are free of singularities [1-4]. The generalization of these solutions from 4D to
5D has been studied by Banerjee et al. [5]. It is now known that any solution of the
apparently empty field equations in 5D can be interpreted as a solution of the 4D
equations with an effective energy-momentum tensor induced by the extra
dimension [6]. Thus from any exact solution in 5D one can obtain the properties of
matter in 4D. This procedure has been applied to a number of cosmological
metrics [7-12], some of which have singularities and some of which do not [13-15]. In
this paper we will present several cylindrically symmetric solutions of the 5D field
equations, evaluate their singularities, and derive their 4D properties of matter.

2. – Metrics and matter

We consider a metric of the type used by Banerjee et al. [5], namely

ds 24A 2 ( dt 22dr 2 )2B 2 dy 22C 2 dz 22D 2 dc 2 .(1)
Here the metric coefficients A, B, C, D can depend on the radius r and the time t, but
not on the other spatial coordinates y, z and the Kaluza-Klein coordinate c . We use
units throughout such that the speed of light c and the gravitational constant G obey
c41, 8pG41. We will consider solutions of the 5D field equations in apparent
vacuum, namely Gab40 or Rab40 (a , b40–4) in terms of the 5D Einstein tensor or the

(*) The authors of this paper have agreed to not receive the proofs for correction.
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Ricci tensor. These equations contain as a subset the 4D field equations with matter,
namely Gab4Tab (a , b40–3) in terms of the 4D Einstein tensor and an appropriately
defined energy-momentum tensor (see ref. [6], p. 3885). The components of the latter
for metric (1) are
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Here an overdot denotes ¯O¯t and a prime denotes ¯O¯r . We have introduced physical
terminology for the density (r), the pressure components in the 3 orthogonal directions
of 3D space ( p1 , p2 , p3) and the heat flux (Q). In general, the 5D induced-matter
approach leads to anisotropic pressure [6], but we will see that the effective 4D
equations of state are radiation-like and physically acceptable.

The components of the Einstein tensor for metric (1) are
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We proceed to give 4 exact solutions of Gb
a40 using (3), together with their induced

properties of matter as derived using (2). Their effective equations of state and
singularity-indicating (5D) Kretschmann scalars K will also be given.

Case I:

.
`
`
`
`
`
/
`
`
`
`
`
´

A4cosh (2mt) Q cosh4 (mr) ,

B4m 21 cosh (2mt) Q cosh (mr) Q sinh (mr) ,

C4cosh (2mt) Q cosh2(mr) ,

D4[cosh (2mt)]21[cosh (mr)]22,

r44m 2 [cosh (2mt)]22 [cosh (mr)]28 [3 tanh2(2mt)12 tanh2(mr)21] ,

p142m 2 [cosh (2mt)]22 [cosh (mr)]28 [2 tanh2(2mt)17 tanh2(mr)21] ,

p242m 2 [cosh (2mt)]22[cosh (mr)]28 [2 tanh2(2mt)2tanh2(mr)21] ,

p344m 2 [cosh (2mt)]22 [cosh (mr)]28 [tanh2(2mt)2tanh2(mr)] ,

Q416m 2sinh (2mt)[cosh (2mt)]23sinh (mr)[cosh (mr)]29,

r4p11p21p3 ,

K4194m 4 [cosh (mr)]220 [cosh (2mt)]28 [8 cosh2(2mt) sinh2(2mt) cosh4(mr)1

16 cosh4 (mr)214 cosh4(2mt) cosh2(mr)19 cosh4(2mt)] .

(4)

Case II:
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´

A4cosh (2mt) Q cosh4(mr) ,

B4m 21 cosh (2mt) Q cosh (mr) Q sinh (mr) ,

C4[cosh (2mt)]21 [cosh (mr)]22 ,

D4cosh (2mt) Q cosh2(mr) ,

r44m 2 [cosh (2mt)]22 [cosh (mr)]28 [sech2(2mt)22 tanh2(mr)] ,

p142m 2 [cosh (2mt)]22 [cosh (mr)]28 [122 tanh2(2mt)23 tanh2(mr)] ,

p242m 2 [cosh (2mt)]22 [cosh (mr)]28 [11tanh2(mr)22 tanh2(2mt)] ,

p344m 2 [cosh (2mt)]22 [cosh (mr)]28 [tanh2(2mt)2tanh2(mr)] ,

Q48m 2sinh (2mt)[cosh (2mt)]23sinh (mr)[cosh (mr)]29,

r4p11p21p3 ,

K4194m 4 [cosh (mr)]220 [cosh (2mt)]28 [8 cosh2(2mt) sinh2(2mt) cosh4(mr)1

16 cosh4(mr)214 cosh4(2mt) cosh2(mr)19 cosh4(2mt)] .

(5)
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Case III:
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A4cosh2 (mr) ,

B4m 21 [ cosh (mr) ]21 sinh (mr) ,

C41 ,

D4cosh (2mt) Qcosh2 (mr) ,

r44m 2 [ cosh (mr) ]26 ,

p142m 2 [ cosh (mr) ]26 ,

p242m 2 [ cosh (mr) ]26 ,

p340 ,

Q40 ,

r4p11p21p3 ,

K4192m 4 [ cosh (mr) ]212 .

(6)

Case IV:

.
`
`
`
/
`
`
`
´

A4cosh2 (mr) ,

B4m 21 [ cosh (mr) ]21 sinh (mr) ,

C4cosh (2mt) Qcosh2 (mr) ,

D41 ,

r40 ,

p14p24p340 ,

Q40 ,

K4192m 4 [ cosh (mr) ]212 .

(7)

In the above, m is a constant. The solutions were derived analytically and confirmed
by computer.

The preceding 4 solutions share some properties. For example, the effective 4D
equation of state is that of radiation or highly relativistic particles, pfrO3, where
pf ( p11p21p3)O3 is the average 3D pressure. (Case IV above may be regarded as
a limit case of this in which the pressure and density are both zero.) The fluids they
describe extend to spatial infinity, so technically they are cosmological in nature. The
density and pressure do not diverge at the origin of either space or time, so they are like
the solutions studied by Banerjee et al. [5]. This is confirmed by their Kretschmann
scalars, which are all finite at the origin of space and time, and in fact all equal to
192m 4 . (Cases I and II have K scalars that depend on t and r and are equal, while cases
III and IV have K scalars that depend on r only and are equal.) Thus they are
cylindrically symmetric cosmological models which, however, lack big-bang singularities.
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The above results may be compared with some others for cosmological 5D metrics
that have appeared in the literature [7 , 13-15]. The simplest such metric is

ds 24dt 22 t ds 22 t 21 dc 2 ,(8)

where ds 2
fdr 21r 2 ( du 21sin2 u df 2) in spherical polars. Substituting this solution of

the 5D field equations into the expression for the effective 4D energy-momentum
tensor [6] gives the density, (isotropic) pressure and equation of state as

r4
3

4 t 2
, p4

1

4 t 2
, r43p .(9)

The 5D Kretschmann scalar is

K4
9

2 t 4
,(10)

confirming that there is a big-bang singularity at t40. This behaviour is similar to that
of the Kasner-like 5D solutions studied by Roque and Seiler [14]. They found several
classes of solutions that generalize to the anisotropic case the isotropic 5D solutions of
Ponce de Leon [13]. The solutions of Roque and Seiler [14] are Bianchi type I on
hypersurfaces c4const , but in general the metric coefficients of the 3 spatial
dimensions and the extra dimension can depend on t and c . The dependence on c in
general leads to non-radiation equations of state for the induced-matter properties [6].
As for singularities, Roque and Seiler noted the existence of non-flat solutions whose
Kretschmann scalars diverged for tK0 and cK0, and 5D flat solutions with zero K.
They also found a non-flat solution with zero K (ref. [14], pp. 1157, 1165). The afore-
mentioned 5D solutions of Ponce de Leon have flat space sections and reduce to 4D
Friedmann-Robertson-Walker (FRW) ones on hypersurfaces c4const [13]. His
physically most interesting solution can be written:

ds 24c 2 dt 22 t 2/a c 2/(12a) ds 22a 2 (12a)22 t 2 dc 2 ,(11)

where a is a parameter related to the induced 4D properties of matter:

r4
3

a 2 c 2 t 2
, p4

2a23

a 2 c 2 t 2
, p4 g 2a

3
21h r .(12)

The choice a42 gives p4rO3 and a scale factor that grows at t 1O2 (i.e. the radiation
model for the early universe). The choice a43O2 gives p40 and a scale factor that
grows as t 2O3 (i.e. dust or the Einstein-de Sitter model for the late universe). The choice
of coordinates in (11) clearly results in an excellent cosmology from the physical
viewpoint. However, those coordinates obscure a property that is very remarkable from
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the mathematical viewpoint. Consider the coordinate transformation

.
`
/
`
´

T4 g a

2
h t 1/a c 1/(12a)g11 r 2

a 2 h2 a

2(122a)
[t 21 c a/(12a) ](122a) /a ,

R4rt 1/a c 1/(12a) ,

C4 g a

2
h t 1/a c 1/(12a)g12 r 2

a 2 h1 a

2(122a)
[t 21 c a/(12a) ](122a) /a .

(13)

Then (11) becomes

ds 24dT 22dR 22R 2 ( du 21sin2 u dc 2 )2dC2 ,(14)

which is manifestly flat. (This may be confirmed by computer using (11) directly.) It
should be noted that a coordinate transformation like (13) that involves the extra
coordinate will preserve 5D geometrical invariants but not necessarily 4D properties
of matter. Also, the 5D metric (11) has a 4D part which is not only an FRW model
on a hypersurface c4const , but also in general curved (the 4D Ricci scalar is
6(a22)Oa 2 t 2 c 2) . These comments lead to a rather interesting interpretation of the
big-bang [15], namely that it can be regarded as the result of an unfortunate choice of
coordinates in a truncated 5D Minkowski space.

3. – Conclusion

We have given 4 new cylindrically symmetric solutions of the “vacuum” equations in
5D and derived their induced 4D physical properties, eqs. (4)-(7). We have also
commented on some known 5D cosmological solutions and their physical
interpretation, eqs. (8)-(14). Our cylindrical solutions have density and pressure which
do not diverge in a big-bang manner, but other cosmological solutions do show such
behaviour. However, in one class of solutions of the latter type the divergence of the
effective 4D properties of matter can be traced to a choice of 5D coordinates. We
suggest further study of how 4D cosmological models can be embedded in 5D space, to
help decide if the big-bang indicated by physical data is a mathematical artifact or
not.

* * *
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of Science and Technology of India and the Natural Sciences and Engineering
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